PhD students
Mariia Arseenko graduated as an engineer majoring in nanomaterials at Belgorod National State University (Russia) in 2013. Now, she is performing a PhD thesis under the supervision of Pr. Aude Simar at Université catholique de Louvain (Belgium). Her research is part of the ERC Starting Grant ALUFIX and focuses on healing of damage in Al alloys with help of healing agents involving eutectic particles. Friction stir processing (FSP) will be used to provide fine distribution of healing particles in the Al matrix. The experimental part on the work includes choosing the best healing material and FSP parameters by help of microstructure and mechanical properties characterization as well as the identification of the damage mechanisms involved.
Pauline Delroisse graduated as mechanical engineer at Université Catholique de Louvain (UCL - Belgium) in 2014. She is working under the supervision of Pr. Aude Simar on a PhD thesis related to additive manufacturing which is the continuity of her master thesis. The main objective of this work is to process and optimize new lightweight architectured structures using selective laser melting (SLM). These structures are made of aluminium alloy (AlSi10Mg) and characterized in terms of microstructure (influence of the process parameters, porosity,…) and mechanical properties (impact resistance, tensile and compressive behaviors). Her work is in support of the increasing interest of the aeronautical and aerospatial industries in this new manufacturing technology.
Matthieu Lezaack graduated as a mechanical science engineer at Université catholique de Louvain (Belgium) in 2017. He currently performs a PhD thesis under the supervision of Pr. Aude Simar. His research focuses on friction stir processing (FSP) performed on 7xxx aluminium alloys. FSP could enhance mechanical properties such as fatigue, toughness and crack opening resistance without losing significant strength. Based on the microstructure analysis of 7xxx aluminium series and post processing heat treatments, FSP seems to supress conventional forming process drawbacks in particular precipitates free zones (PFZ) generally observed in industrial alloys. These PFZ are weak zones acting as preferential path to failure. In addition, FSP is expected to be an efficient way to restore the microstructural homogeneity of the alloy.
Juan Guillermo Santos Macías is doing a PhD thesis under the joint supervision of Pr. Pascal Jacques and Pr. Aude Simar. This project aims at improving the mechanical behaviour of additive manufactured parts through a friction stir processing (FSP) surface mechanical treatment. This post-processing method significantly enhance ductility and is expected to also enhance fatigue resistance. Fatigue is a critical phenomenon in many applications, e.g. structural parts in the aerospace industry. More specifically, this research is focused on studying the effect of FSP on the microstructure (porosity and second phase size and spatial distribution) and mechanical behaviour (residual stresses and fatigue) of selective laser melting AlSi10Mg parts. Furthermore, in order to define an adequate FSP patterning strategy, the project will also feature an analysis of the influence of processing parameters through a chained thermal and microstructural model.
Senior scientists / postdoctoral researchers
Matthieu Marteleur, Dr, Senior scientist
Sophie Ryelandt, Senior scientist
Sophie Ryelandt graduated as a physical engineer at Université catholique de Louvain in 1991. After having worked for six years at the R&D center of the Spadel company, she came back at UCL as a senior scientist. She is involved in various applied research projects in collaboration with the industry. Her research domains are dealing with material science, metallic composites, multilayered materials and coatings, additive manufacturing of metals, nanomechanical and mechanical testing and the link between microstructure and mechanical properties.
Thaneshan Sapanathan, Dr, Senior scientist
Thaneshan SAPANATHAN completed a mechanical engineering degree and a PhD at Monash University (Australia) in 2010 and 2014, respectively. His thesis was entitled “Fabrication of axi-symmetric hybrid materials using combination of shear and pressure”. During his PhD, he worked on architectured hybrid materials fabrication using severe plastic deformation (SPD) processes. Two novel axi-symmetric SPD techniques were investigated to fabricate hybrid materials with concurrent grain refinements. After that, he started a research project at University of Technology of Compiègne (France) in which he investigated the weldability window for similar and dissimilar material combinations using numerical simulations for magnetic pulse welding. He also studied the interfacial phenomena, behavior of material under high strain rate deformation, modeling and simulation of the magnetic pulse welding/forming. Currently, he is working as a postdoctoral research fellow at UCL on the topic of characterizations of aluminium to steel welds made by friction stir welds and friction melt bonding. In particular, he will study the residual stresses and effect of intermetallic distribution on the mechanical properties of these welds.
Camille van der Rest, Dr, Senior scientist
Camille van der Rest completed her PhD thesis on the optimisation of Heusler Fe2VAl-based thermoelectric compounds through innovative metallurgical processing in 2015. It was under the joint supervision of Prof. Pascal Jacques and Prof. Aude Simar. Her research topics now concern thermoelectric materials, additive manufacturing and friction stir processing technologies. Concerning thermoelectrics, the main objective is the development of low-cost, non-toxic, and powerful materials that could be used in large-scale industrial applications of heat recovery. In addition, she studies some fundamental aspects in order to improve the performances of such materials, i.e. ordering phenomena in off-stoichiometric Fe2VAl-based Heusler compounds. It is essential to make the link between (innovative) manufacturing processes, microstructures and the functional properties of these TE materials. Concerning additive manufacturing, the main contributions are on the characterisation and optimisation of the microstructures and the mechanical behaviour of Al parts obtained by Selective Laser Melting and the developpment of new materials for additive manufacturing. Again, the link between the process parameters and the final microstructure/properties is a key issue. Finally, Camille developed, together with Prof. Aude Simar and Prof. Pascal Jacques, a novel Friction Melt Bonding (FMB) process in order to weld aluminium alloys and steels. This process is still under development thanks to the collaboration with other researchers of IMAP.
Lv Zhao, Dr, Postdoctoral researcher
Lv ZHAO completed his Master and PhD degrees in Institut National des Sciences Appliquées de Lyon in 2013 and 2016. His PhD work addressed the fracture behavior of solar grade monocrystalline and multi-crystalline silicon wafers, in which a couple of innovative experimental techniques have been elaborated and new results highlighted. He is now working for the ERC Starting Grant ALUFIX as a post-doc fellow with Professor Aude Simar. He is particularly interested in the crack propagation in aluminum alloys in the presence of local residual stresses induced by healing agents such as shape memory alloy particles. His work encompasses an experimental part in which metal matrix composites (MMCs) will be fabricated by friction stir processing, and a numerical part in which cohesive zone method will be applied to address the crack path within the MMCs in the framework of finite element modeling.
Alumni
Florent Hannard graduated as a materials science engineer at Université catholique de Louvain (Belgium) in 2013. He is currently doing a PhD thesis (funded by a FRIA grant), started in September 2013 and under the joint supervision of Prof. Thomas Pardoen and Prof. Aude Simar from UCL. His research focuses on the contribution from microstructure heterogeneities on the micromechanisms of ductile damage and cracking in metallic alloys. In order to address these effects on damage accumulation, a combined experimental and a modeling strategy is developed. The experimental strategy relies on in situ tensile testing coupled to 3D microtomography, in situ laminography during sheet loading and a variety of more classical mechanical tests. A cellular automaton type modeling is used to capture particle size distribution and cluster effects on the void nucleation and coalescence processes. His project also involves the use of friction stir processing (FSP) in order to increase the ductility of industrial aluminium alloys of the 6xxx series. From an applicability viewpoint, this method has the potential to locally improve ductility of sheets at locations where forming involves large strains or of structural components at stress concentration points.
Norberto Jimenez Mena graduated as a mechanical engineer at the University Carlos III of Madrid, Spain, in 2013. He started his PhD thesis in September 2013 under the supervision of Prof. Aude Simar and Prof. Pascal Jacques and funded by a FRIA grant. His thesis aims at understanding and optimizing dissimilar welds of aluminium to steel by means of a novel Friction Melt Bonding (FMB) process. Currently, the transport industry lacks of reliable methods to join these two materials due to their metallurgical and physical incompatibilities. In FMB, developed and patented at the UCL, the bonding is formed by a reaction of liquid aluminium and solid steel to form a continuous intermetallic layer. The strength of the weld is mainly determined by the composition and shape of the intermetallic and the presence of solidification defects. The goal is to identify the role of the thermomechanical cycles in the intermetallic and defect formation to find an optimum that maximises the strength using finite element modelling, diffusion kinetics calculations, specific toughness testing.