CORE
Voie du Roman Pays 34/L1.03.01
1348 Louvain-la-Neuve
- Accueil
- Répertoire
- Daniele Catanzaro
Daniele Catanzaro
Professeur
- Discrete Optimization
- Integer Programming
- Polyhedral Combinatorics
- Computational Complexity
- Phylogenetics
Dehaybe, Henri ; Catanzaro, Daniele ; Chevalier, Philippe. Deep Reinforcement Learning for Inventory Optimization with Non-Stationary Uncertain Demand. In: European Journal of Operational Research, (2024). doi:10.1016/j.ejor.2023.10.007.
Catanzaro, Daniele ; Frohn, Martin ; Gascuel, Olivier ; Pesenti, Raffaele. A Massively Parallel Branch-&-Bound Algorithm for the Balanced Minimum Evolution Problem. In: Computers & Operations Research, Vol. 158, p. 106308 (2023). doi:10.1016/j.cor.2023.106308.
Gasparin, Andrea ; Camerota Verdù, Federico Julian ; Catanzaro, Daniele ; Castelli, Lorenzo. An evolution strategy approach for the balanced minimum evolution problem. In: Bioinformatics, Vol. 39, no. 11 (2023), p. btad660 (2023). doi:10.1093/bioinformatics/btad660.
Catanzaro, Daniele ; Pesenti, Raffaele ; Ronco, Roberto. Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey. In: European Journal of Operational Research, Vol. 308, no.3, p. 1091-1109 (2023). doi:10.1016/j.ejor.2023.01.029.
Catanzaro, Daniele ; Frohn, Martin ; Gascuel, Olivier ; Pesenti, Raffaele. A tutorial on the balanced minimum evolution problem. In: European Journal of Operational Research, Vol. 300, no. 1, p. 1-19 (2022). doi:10.1016/j.ejor.2021.08.004.
Catanzaro, Daniele ; Coniglio, Stefano ; Furini, Fabio. On the exact separation of cover inequalities of maximum-depth. In: Optimization Letters, Vol. 16, no. 2, p. 449-469 (2022). doi:10.1007/s11590-021-01741-0.
Catanzaro, Daniele ; Pesenti, Raffaele ; Ronco, Roberto. A new fast and accurate heuristic for the Automatic Scene Detection Problem. In: Computers & Operations Research, Vol. 136, p. 105495 (2021). doi:10.1016/j.cor.2021.105495 (Accepté/Sous presse).
Catanzaro, Daniele ; Frohn, Martin ; Pesenti, Raffaele. An information theory perspective on the balanced minimum evolution problem. In: Operations Research Letters, Vol. 48, no.3, p. 362-367 (2020). doi:10.1016/j.orl.2020.04.010.
Catanzaro, Daniele ; Pesenti, Raffaele ; Wolsey, Laurence. On the balanced minimum evolution polytope. In: Discrete Optimization, Vol. 36, p. 100570 (2020). doi:10.1016/j.disopt.2020.100570 (Accepté/Sous presse).
Luciano Porretta ; Catanzaro, Daniele ; Bjarni V. Halldórsson ; Bernard Fortz. A Branch&Price Algorithm for the Minimum Cost Clique Cover Problem in Max-Point Tolerance Graphs. In: 4OR : quarterly journal of the Belgian, French and Italian Operations Research Societies, Vol. 17, no. 1, p. 75-96 (2019). doi:10.1007/s10288-018-0377-3.
Catanzaro, Daniele ; Pesenti, Raffaele. Enumerating vertices of the balanced minimum evolution polytope. In: Computers & Operations Research, Vol. 109, p. 209-217 (2019). doi:10.1016/j.cor.2019.05.001.
Catanzaro, Daniele ; Chaplick, S. ; Felsner, S. ; Halldórsson, B.V. ; Halldórsson, M.M. ; Hixon, T. ; Stacho, J.. Max point-tolerance graphs. In: Discrete Applied Mathematics, Vol. 216, no. 1, p. 84-97 (2017). doi:10.1016/j.dam.2015.08.019.
Catanzaro, Daniele. Classifying the progression of Ductal Carcinoma from single-cell sampled data via integer linear programming: A case study. In: IEEE-ACM Transactions on Computational Biology and Bioinformatics, Vol. 13, no. 4, p. 643 (2016). doi:10.1109/TCBB.2015.2476808.
Catanzaro, Daniele ; Aringhieri, Roberto ; Di Summa, Marco ; Pesenti, Raffaele. A branch-price-and-cut algorithm for the minimum evolution problem. In: European Journal of Operational Research, Vol. 244, no. 3, p. 753-765 (2015). doi:10.1016/j.ejor.2015.02.019.
Catanzaro, Daniele ; Engelbeen, C.. An integer linear programming formulation for the minimum cardinality segmentation problem. In: Algorithms, Vol. 8, no.4, p. 999-1020 (2015). doi:10.3390/a8040999.
Catanzaro, Daniele ; Gouveia, Luis ; Labbé, Martine. Improved integer linear programming formulations for the job sequencing and tool switching problem. In: European Journal of Operational Research, Vol. 244, no.3, p. 766-777 (2015). doi:10.1016/j.ejor.2015.02.018.
Catanzaro, Daniele ; Ravi, R. ; Schwartz, R.. A mixed integer linear programming model to reconstruct phylogenies from single nucleotide polymorphism haplotypes under the maximum parsimony criterion. In: BMC Algorithms for Molecular Biology, Vol. 8, no.n.a., p. 3 (2013).
Catanzaro, Daniele ; Labbé, M. ; Halldórsson, B.V.. An integer programming formulation of the parsimonious loss of heterozygosity problem. In: IEEE-ACM Transactions on Computational Biology and Bioinformatics, Vol. 10, no.6, p. 1391-1402 (2013). doi:10.1109/TCBB.2012.138.
Catanzaro, Daniele ; Labbé, M. ; Pesenti, R.. The balanced minimum evolution problem under uncertain data. In: Discrete Applied Mathematics, Vol. 161, no.13-14, p. 1789-1804 (2013). doi:10.1016/j.dam.2013.03.012 (Soumis).
Catanzaro, Daniele ; Gourdin, E. ; Labbé, M. ; Özsoy, F.A.. A branch-and-cut algorithm for the partitioning-hub location-routing problem. In: Computers & Operations Research, Vol. 38, no.2, p. 539-549 (2011). doi:10.1016/j.cor.2010.07.014.
Catanzaro, Daniele ; Labbé, M. ; Porretta, L.. A class representative model for pure parsimony Haplotyping under Uncertain Data. In: PLoS One, Vol. 6, no.3, p. e17937 (2011). doi:10.1371/journal.pone.0017937.
Aringhieri, R. ; Catanzaro, Daniele ; Di Summa, M.. Optimal solutions for the balanced minimum evolution problem. In: Computers & Operations Research, Vol. 38, no.12, p. 1845-1854 (2011). doi:10.1016/j.cor.2011.02.020.
Catanzaro, Daniele ; Labbé, M. ; Salazar-Neumann, M.. Reduction approaches for robust shortest path problems. In: Computers & Operations Research, Vol. 38, no.11, p. 1610-1619 (2011). doi:10.1016/j.cor.2011.01.022.
Catanzaro, Daniele ; Labbé, Martine ; Pesenti, Raffaele ; Salazar-González, Juan-José. The Balanced Minimum Evolution Problem. In: INFORMS Journal on Computing, Vol. 24, no.2, p. 187-341 (2011). doi:10.1287/ijoc.1110.0455.
Catanzaro, Daniele ; Andrien, M. ; Labbé, M. ; Toungouz-Nevessignsky, M.. Computer-aided human leukocyte antigen association studies: A case study for psoriasis and severe alopecia areata. In: Human Immunology, Vol. 71, no.8, p. 783-788 (2010). doi:10.1016/j.humimm.2010.04.003.
Catanzaro, Daniele ; Labbé, Martine ; Godi, Alessandra. A class representative model for pure parsimony haplotyping. In: INFORMS Journal on Computing, Vol. 22, no.2, p. 195-209 (2009).
Catanzaro, Daniele ; Labbé, Martine ; Pesenti, Raffaele ; Salazar-González, Juan-José. Mathematical models to reconstruct phylogenetic trees under the minimum evolution criterion. In: Networks, Vol. 53, no.2, p. 126-140 (2009). doi:10.1002/net.20281.
Catanzaro, Daniele. The minimum evolution problem: Overview and classification. In: Networks, Vol. 53, no.2, p. 112-125 (2009). doi:10.1002/net.20280.
Catanzaro, Daniele ; Pesenti, R. ; Milinkovitch, M.C.. An ant colony optimization algorithm for phylogenetic estimation under the minimum evolution principle. In: Evolutionary Bioinformatics, Vol. 7, no.2, p. 153-163 (2007).
Gatto, Laurent ; Catanzaro, Daniele ; Milinkovitch, Michel C. Assessing the applicability of the GTR nucleotide substitution model through simulations.. In: Evolutionary bioinformatics online, Vol. 2, p. 145-55 (2007).
Catanzaro, Daniele ; Pesenti, R. ; Milinkovitch, M.C.. A non-linear optimization procedure to estimate distances and instantaneous substitution rate matrices under the GTR model. In: Bioinformatics, Vol. 22, no.6, p. 708-715 (2006). doi:10.1093/bioinformatics/btk001.
Catanzaro, Daniele. Estimating phylogenies from molecular data. In: R. Bruni, Mathematical approaches to polymer sequence analysis and related problems, 2011. 978-1-4419-6799-2. doi:10.1007/978-1-4419-6800-5.
Legrand, Emma ; Coppé, Vianney ; Catanzaro, Daniele ; Schaus, Pierre. A Dynamic Programming Approach for the Job Sequencing and Tool Switching Problem (LIDAM Discussion Paper CORE; 2024/30), 2024. 16 p.
Catanzaro, Daniele ; Pesenti, Raffaele ; Ronco, Roberto. Characterizing path-length matrices of unrooted binary trees (LIDAM Discussion Paper CORE; 2024/28), 2024. 27 p.
Catanzaro, Daniele ; Pesenti, Raffaele ; Sapucaia Barboza, Allan ; Wolsey, Laurence. Optimizing over Path-Length Matrices of Unrooted Binary Trees (LIDAM Discussion Paper CORE; 2023/20), 2024. 35 p.
Catanzaro, Daniele ; Frohn, Martin ; Gascuel, Olivier ; Pesenti, Raffaele. A Massively Parallel Exact Solution Algorithm for the Balanced Minimum Evolution Problem (LIDAM Discussion Paper CORE; 2023/01), 2023. 33 p.
Gasparin, Andrea ; Camerota Verdù, Federico Julian ; Catanzaro, Daniele. An evolution strategy approach for the Balanced Minimum Evolution Problem (LIDAM Discussion Paper CORE; 2023/21), 2023. 7 p.
Catanzaro, Daniele ; Frohn, Martin ; Pesenti, Raffaele. A Massively Parallel Exact Solution Algorithm for the Balanced Minimum Evolution Problem (LIDAM Discussion Paper CORE; 2021/23), 2021. 41 p.
Catanzaro, Daniele ; Pesenti, Raffaele ; Ronco, Roberto. A New Fast and Accurate Heuristic for the Automatic Scene Detection Problem (LIDAM Discussion Paper CORE; 2021/22), 2021. 18 p.
Catanzaro, Daniele ; Frohn, Martin ; Gascuel, Olivier ; Pesenti, Raffaele. A Tutorial on the Balanced Minimum Evolution Problem (LIDAM Discussion Paper CORE; 2021/27), 2021. 31 p.
Catanzaro, Daniele ; Pesenti, Raffaele ; Ronco, Roberto. Job Scheduling under Time-of-Use Energy Tariffs for Sustainable Manufacturing: A Survey (LIDAM Discussion Paper CORE; 2021/19), 2021.
Catanzaro, Daniele ; Frohn, Martin ; Pesenti, Raffaele. On Numerical Stability and Statistical Consistency of the Balanced Minimum Evolution Problem (LIDAM Discussion Paper CORE; 2021/26), 2021. 5 p.
Catanzaro, Daniele ; Coniglio, Stefano ; Furini, Fabio. On the exact separation of cover inequalities of maximum-depth (LIDAM Discussion Paper CORE; 2021/18), 2021. 16 p.