Cancer

Bruxelles Woluwe

Cancer cachexia regroups a pattern of metabolic disorders occurring in cancer. This complex and highly invalidating disease remains an unmet medical need for which new therapeutic tools are warranted. Prof Bindels and her team are currently investigating the role and therapeutic interest of gut microbes, bacterial metabolites and microbiota-targeting foods in cancer cachexia. We combine metabolomics, next-generation sequencing and integrative physiology to dissect the relationship between gut microbes and their host in this specific context. With this project, we aim to deliver innovative nutritional and pharmacological tools that would ultimately provide a better supportive care to cancer patients.

Tumor targeting by nanomedicine-based therapeutics has emerged as a promising approach to overcome the lack of specificity of conventional chemotherapeutic agents and to provide clinicians the ability to overcome shortcomings of current cancer treatment, including the poor entry of chemotherapeutic drugs into tumors. Prof V. Préat, Dr F. Danhier and their team are currently investigating the therapeutic efficacy and the influence on the tumor microenvironment of targeted nanomedicines designed for the intravenous and local delivery (mainly colorectal cancer and glioblastoma). Additionally, Prof R. Vanbever and her team optimize the delivery of nanomedicines to the lungs for a local treatment of lung cancer.

Harnessing the immune system to fight cancer is an attractive strategy. Prof V. Préat, Dr G. Vandermeulen, and their team aim at optimizing DNA vaccines to specifically treat tumors. They improve both the vaccine itself, at the molecular point of view, and the systems that allow its delivery, in particular electroporation. Their latest research exploits the properties of viral proteins which are engineered to efficiently present tumor antigens to the immune system. The project aims to provide a potent and versatile nucleic acid-based platform able to target several cancers. In parallel, Prof R. Vanbever explores the potential of the pulmonary route for the local delivery of vaccine adjuvants.