Selected publications of group "Algebraic topology"
On calculus of functors and the little disk operad:
Lambrechts, Pascal; Volić, Ismar Formality of the little N-disks operad. Mem. Amer. Math. Soc. 230 (2014), no. 1079, viii+116 pp.
Lambrechts, Pascal; Turchin, Victor; Volić, Ismar The rational homology of spaces of long knots in codimension >2. Geom. Topol. 14 (2010), no. 4, 2151–2187.
Lambrechts, Pascal; Turchin, Victor Homotopy graph-complex for configuration and knot spaces. Trans. Amer. Math. Soc. 361 (2009), no. 1, 207–222.
Arone, Gregory; Lambrechts, Pascal; Volić, Ismar Calculus of functors, operad formality, and rational homology of embedding spaces. Acta Mathematica 199 (2007), no. 2, 153–198.
On rational homotopy theory:
Félix, Yves; Halperin, Steve; Thomas, Jean-Claude Rational homotopy theory. II. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. xxxvi+412 pp. ISBN: 978-981-4651-42-4
Felix, Yves; Halperin, Steve; Thomas, Jean-Claude Exponential growth and an asymptotic formula for the ranks of homotopy groups of a finite 1-connected complex. Annals of Mathematics (2) 170 (2009), no. 1, 443–464
Félix, Yves; Halperin, Stephen; Thomas, Jean-Claude Rational homotopy theory. Graduate Texts in Mathematics, 205. Springer-Verlag, New York, 2001. xxxiv+535 pp. ISBN: 0-387-95068-0
Hardt, Robert; Lambrechts, Pascal; Turchin, Victor; Volić, Ismar Real homotopy theory of semi-algebraic sets. Algebr. Geom. Topol. 11 (2011), no. 5, 2477–2545.
Lambrechts, Pascal; Stanley, Don Poincaré duality and commutative differential graded algebras. Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 4, 495–509.
On link homology/categorification:
P. Vaz and E. Wagner, A remark on BMW algebra, q-Schur algebras and categorification, Canadian Journal of Mathematics, 66 (2014), no. 2, 453-480.
P. Vaz, On Jaeger’s HOMFLY-PT expansions, branching rules and link homology : a progress report, Boletim da Sociedade Portuguesa de Matemática, n. especial (2012), 91-94.
M. Mackaay, M. Stosic, P. Vaz, The 1,2-coloured HOMFLY-PT link homology, A diagrammatic categorification of the q-Schur algebra, Quantum Topology 4 (2013), 1-75.
M. Mackaay, M. Stosic, P. Vaz, The 1,2-coloured HOMFLY-PT link homology, Trans. Amer. Math. Soc. 363 (2011), 2091-2124.
M. Mackaay, M. Stosic, P. Vaz, sl(N )-link homology (N ≥ 4) using foams and the Kapustin-Li formula, Geometry & Topology 13 (2009) 1075-1128.